
‭Documentation‬
‭Version 1.2‬

‭1. Introduction‬ ‭2‬
‭2. Installation‬ ‭3‬

‭Build-in‬ ‭3‬
‭URP‬ ‭3‬
‭HDRP‬ ‭4‬

‭3. Notes‬ ‭7‬
‭4. Usage SwitchControllers‬ ‭8‬

‭4.1 MainSwitchController (Please read before others, reusing explanations)‬ ‭9‬
‭Field Definitions‬ ‭10‬

‭Action Targets‬ ‭11‬
‭SetActive‬ ‭12‬
‭Movement‬ ‭12‬
‭Teleportation‬ ‭12‬
‭Scale‬ ‭12‬
‭Rotation‬ ‭13‬
‭ExtendedOptions‬ ‭13‬
‭SwingLoop‬ ‭14‬
‭Sounds‬ ‭14‬
‭Field Definitions‬ ‭15‬

‭SubSwitchControllers‬ ‭18‬
‭Field Definitions‬ ‭19‬

‭Preconditions‬ ‭21‬
‭Field Definitions‬ ‭22‬

‭4.2 NodeWalkerSwitchController‬ ‭22‬
‭4.3 CustomSwitchController_ConstantRotator‬ ‭25‬
‭4.4 CustomSwitchController_SwitchMaterial‬ ‭26‬
‭4.5 CustomSwitchController_CombinationProxy‬ ‭27‬

‭4.6 CustomSwitchController_ToggleStateFilterProxy‬ ‭29‬
‭4.6 Create your own SwitchControllers‬ ‭30‬

‭5. Usage SwitchControllerStateSetter‬ ‭31‬
‭5.1 OnCollision_SwitchControllerStateSetter‬ ‭31‬
‭5.2 Create your own SwitchControllerStateSetter‬ ‭32‬

‭6. Visualization and Configuration‬ ‭32‬
‭6.1 The coloring in the inspector‬ ‭33‬
‭6.2 Hierarchy icons‬ ‭34‬
‭6.3 Gizmos in scene view‬ ‭35‬

‭7. Lever generator (in demo scene)‬ ‭38‬

‭1. Introduction‬
‭SwitchNTrap is a compact, state based controlling system for traps, elevators, switches,‬
‭levers, doors and much more. The main workflow is based primarily on rotation and‬
‭movement of objects. You can easily create chaining events for example if something is‬
‭touching a specific object it opens a door somewhere, it moves a trap and after it's finished it‬
‭does something else. SwitchNTrap comes with a pack of modular 3D PRB assets (that you‬
‭can use standalone) for your dungeons or other types of environment.‬

‭Create your own combination of materials for your custom lever in the demo scene with the‬
‭Lever generator.‬

‭The system supports any rotations without limits, movement on multiple position nodes,‬
‭swinging of objects and manipulation of some extra options such as material switching.‬

‭It provides visual support for better control of things in your scene. Drag and drop your‬
‭sounds. You can build in minutes the whole interactive level after some practice. It can‬
‭enhance your work in any kind of game greatly.‬

‭Let your fantasy free!‬

‭Latest documentation link‬
‭If you need help use my discord channel:‬

‭Help on Discord‬

http://www.titaniumworld.de/snt_documentation.pdf
https://discord.gg/wR87xZgrCD

‭2. Installation‬
‭Please do not move the package to other asset folders or the icons will not work. It will be‬
‭supported in later versions.‬
‭But you can safely move or copy prefabs and materials and place your custom scripts‬
‭outside.‬

‭For better understanding and visual experience it's best to test the demo scene in the‬
‭build-in rendering pipeline project.‬

‭Build-in‬

‭1.‬ ‭Import the package.‬
‭2.‬ ‭Open the demo scene “Assets\Savchenko\SwitchNTrap\DemoScene.unity” and look‬

‭at the examples.‬

‭URP‬
‭1.‬ ‭Import the package.‬
‭2.‬ ‭Open the demo scene “Assets\Savchenko\SwitchNTrap\DemoScene.unity”.‬
‭3.‬ ‭Convert the materials/shaders to URP (Make copy of your project in case)‬
‭4.‬ ‭(Optional) adjust Skybox and light for the demo scene. The Demo scene was made‬

‭on Built-In RP and will look darker on URP on default.‬
‭5.‬ ‭Look at the examples.‬

‭HDRP‬
‭1.‬ ‭Import the package.‬
‭2.‬ ‭Open the demo scene “Assets\Savchenko\SwitchNTrap\DemoScene.unity”.‬
‭3.‬ ‭Convert the materials to HDRP (Make copy of your project in case)‬
‭4.‬ ‭(Optional) adjust Skybox and light for the demo scene. The Demo scene was made‬

‭on Built-In RP and will look darker on HDRP on default.‬
‭5.‬ ‭Look at the examples.‬

‭6.‬ ‭If InputSystem error occurs. Fix it by setting “Active Input Handling” to “Both” in‬
‭player settings.‬

‭7.‬ ‭If some of the transparent materials turn black, give it some time(~5 minutes). If it‬
‭wont help, select light in the scene and if it still wont help, check those few materials‬
‭and set “Surface Type” to transparent.‬‭I will include‬‭separate packages in later‬
‭versions for all rendering pipelines.‬

‭3. Notes‬
‭-‬ ‭For scene-view gizmos, button “F” is your best friend. Focus on objects with‬

‭SwitchController to have a better visualization on it.‬
‭-‬ ‭For gizmos visualization MainSwitchController or NodeWalker must be selected and‬

‭gizmos must be turned on.‬

‭-‬ ‭Do not move‬‭SwitchNTrap to other directories in the‬‭assets folder. It's not supporting‬
‭it right now, but will change in a later version.‬

‭-‬ ‭While using movement or rotation manipulating SwitchControllers do not change the‬
‭rotation or rotation by other scripts or events (RigidBody physics) on the same‬
‭ActionTarget or it could lead to not expected results.‬

‭-‬ ‭The hierarchy icons use lazy load to not hit on performance of the editor. By selecting‬
‭items, icons will reload.‬

‭-‬ ‭Use demo scene for examples‬
‭-‬ ‭Make a copy of prefabs if you want to modify them or else the demo scene can‬

‭break.‬
‭-‬ ‭For easier configuration of target objects for movement or rotation, place them into‬

‭parents.‬
‭-‬ ‭For use on older mobiles: The assets have mid-poly count and could be used in older‬

‭mobile devices as well. In case the performance hits, the materials must be reduced‬
‭and the maximum texture size must be decreased in configuration for that. (duplicate‬
‭material, remove Normal- Map, heightmap… til it fits your needs)‬

‭4. Usage SwitchControllers‬
‭SwitchControllers are working as state machines. There are basic four states:‬

‭-‬ ‭Deactivated:‬‭Deactivating‬‭task is done.‬
‭-‬ ‭Activating: Task is doing job and is transferring itself on finish to‬‭Activated‬‭.‬
‭-‬ ‭Activated:‬‭Activating‬‭task is done.‬
‭-‬ ‭Deactivating: Task is doing job and is transferring itself on finish to‬‭Deactivated‬‭.‬

‭Depending on the script the tasks vary.‬
‭Some scripts are reduced to Activated/Deactivated state instead of Activating->Activated.‬
‭All positions used in the configuration are‬‭“localPositions”‬‭so you might put TargetObjects‬
‭into parents to easier setup the positions from 0.‬

‭The scripts that implement ISwitchController can be connected in chains. You can easily‬
‭write your own scripts that will work with others in a chain.‬
‭Look at the demo scene for examples or you can just drag and drop combinations to the‬
‭asset folder to create prefabs for your game from it.‬

‭All SwitchControllers implement‬‭ISwitchController‬‭interface.‬
‭You can easily set the state of any SwitchController inside any of your‬
‭scripts by calling for example (for Activating):‬

‭var‬‭switchController‬‭=‬‭targetGameObject‬‭.GetComponent<‬‭ISwitchController‬‭>();‬
‭switchController‬‭.OnSetStateByCaller(TriggerStateEnum.‬‭Activating‬‭);‬

‭look for example on OnCollision_SwitchControllerStateSetter.‬

‭You can get current state by:‬
‭switchController‬‭.OnGetStateByCaller();‬

‭There are also a lot of public fields which you can access depending on the script.‬

‭4.1 MainSwitchController‬‭(Please read before others,‬‭reusing‬
‭explanations)‬
‭Handles:‬

‭-‬ ‭movement between two positions.‬
‭-‬ ‭rotation from an angle to an angle. Can create swinging movement with a third angle.‬

‭Supports negative rotations if you want to rotate in specific direction and there is no‬
‭limit in rotation angle(You can rotate for example 3600° or -3600° 10 times around)‬

‭-‬ ‭SetActive (Enable/Disable) object‬‭. Note: Do not put‬‭the script for SetActive on the‬
‭same object as the action target, because else it will disable the script on‬
‭Deactivated state.‬

‭-‬ ‭adding sounds for each state and situation.‬

‭The concept is to have “ActionTarget” which should be moved rotated ot SetActive.‬
‭After the task is done depending on configuration the state of the SwitchController will‬
‭change and notify “SubSwitchControllersToTriggerOnStateChange” if needed. You can add‬
‭multiple “ActionTargets” and multiple “SubSwitchControllers”.‬

‭Field Definitions‬

‭StartState‬ ‭State on load of the script.‬

‭For example on MainSwitchController, on‬
‭start will set rotation or position given in‬
‭rotation and movement settings if set.‬

‭OverrideCurrentStateWithStartStateOnStart‬ ‭Should the current state be instantly‬
‭overloaded by the start state on start‬
‭without executing state changing tasks?‬

‭OldState (ReadOnly)‬ ‭Previous state.‬

‭CurrentState‬ ‭Current state of SwitchController.‬

‭Sleep‬ ‭Pauses all update actions. The state can‬
‭still be set from outside.‬

‭TriggeredCount (ReadOnly)‬ ‭How many state changing events had been‬
‭received.‬

‭TriggeredCountWithActionFinish‬
‭(ReadOnly)‬

‭Count of how many times triggered with‬
‭successful finished action. Useful if for‬
‭example a switch should trigger something‬
‭if exactly 3 times triggered.‬

‭ActionTargets‬ ‭Configuration for GameObjects to perform‬

‭action on.‬

‭SubSwitchControllersToTriggerOnStateCha‬
‭nge‬

‭Other GameObjects with SwitchControllers‬
‭that are connected to the state change of‬
‭this one. This is needed to create chaining‬
‭events. If state of this SController changes‬
‭it will trigger the configuration to change‬
‭state on SubSwitchControllers(connected‬
‭SwitchControllers)‬

‭IsOnlyOnceTriggable‬ ‭Only one state changing event is allowed,‬
‭others after will be blocked.‬

‭InvertOwnExternalStateChange‬ ‭If activated the state changing attempts‬
‭from outside will be inverted.‬
‭Activating->Deactivating,Deactivating->Acti‬
‭vating.‬

‭RestoreStartStateAfterTrigger‬ ‭Automatically restores the start state after‬
‭state changing action was received and‬
‭finished.‬

‭PreconditionsForOwnStateChange‬ ‭Conditions when to execute state changing‬
‭actions or rewrite depending on other‬
‭SControllers.‬

‭Action Targets‬

‭The Action Target contains definitions for tasks. The field “TargetGameObject” is any‬
‭“GameObject” that should be moved for example. With “SetStateOnDone” you can let the‬
‭task change the state only on specific conditions. For example if you want to rotate‬
‭something but it should not be relevant for state change you can mute it.‬

‭SetActive‬

‭To deactivate on Deactivated state or activate on Activated state the TargetGameObject‬
‭mark “SetActive”.‬‭It disables other options‬‭.‬

‭Movement‬

‭For basic movement mark “UseMovement”.‬
‭For example, given the data on the following snippet, “PositionOnActivated” means that on‬
‭“Activating”‬‭it will move to x:10,y:0,z:0 and switch‬‭controllers state to‬‭“Activated”‬‭if no extra‬
‭tasks are given to wait for. On‬‭“Deactivating‬‭” the‬‭reverse to “.localPosition=Vector3(0,0,0)”.‬

‭Teleportation‬

‭To Teleport on any stateChange the TargetGameObject set‬
‭PositionOnActivated=PositionOnDeactivated but not x:0y:0z:0.‬

‭For example:‬

‭will teleport the TargetGameObject to “localPosition” x:100,y:10,z:0 if the state changes.‬

‭Scale‬

‭For basic scale mark “UseScale”. Similar to movement settings!‬
‭For example, given the data on the following snippet, “ScaleOnActivated” means that on‬
‭“Activating”‬‭it will scaleto x:1,y:0.5,z:-2 and switch controllers state to‬‭“Activated”‬‭if no extra‬
‭tasks are given to wait for. On‬‭“Deactivating‬‭” the reverse to “.localScale=Vector3(0.3,1,2)”.‬

‭Rotation‬

‭For basic rotation mark “UseRotation”.‬
‭The same game goes here. Set which rotation you want the TargetObject to have on each‬
‭state. The Rotation direction can go in a positive or negative direction. The rotations can go‬
‭over (+/-)360° degrees. By “ShowDebugInfo” check you can see what exactly is done with‬
‭rotation chunks.‬

‭ExtendedOptions‬
‭By expanding “ExtendedOptions” you can do even more.‬

‭For example, instead of using linear speed you can use‬‭“SpeedFlow”‬‭. This chart represents‬
‭for X-axis the lifetime of a task from 0 to 1 (1=100% done) and on Y-axis the speed‬
‭multiplier. By using it you can make for example that something moves faster or slower on‬
‭certain progress.‬

‭Rotation supports rotating of the “TargetGameObject” in any direction (-/+) and any Angle. If‬
‭the delta angle is used over 360° it will spin over.‬

‭SwingLoop‬

‭If it's desired to create a swinging object, in rotation settings the “useSwingLoop” option can‬
‭be used. It adds to “Activating” state another axis configuration. So on Activating the‬
‭“TargetObject” rotates from OnDeactivated Rotation axis-> onActivatedRotationAxis and‬
‭from there to SwingLoop and from there goes back to Activated axis‬
‭repeating(SwingLoop->Activated, Activated->SwingLoop, SwingLoop->Activated…).‬

‭Sounds‬

‭You can add sounds for progress states of rotation and movement.‬

‭If it's desired to use looping repeating sounds for progress mark “Loop” checkbox.‬

‭SwitchConroller automatically generates AudioSources for “OneShot” and “Looping” sounds,‬
‭if the component has Audio source it will be used or copied. So if extended control over‬
‭sound is needed please add AudioSource on the TargetObject with custom configuration.‬

‭Swing Loop sounds have some extra sound options to repeat the sounds delayed, progress‬
‭based or by direction change. More options for sounds will be added in later releases to‬
‭other configurations.‬

‭Field Definitions‬

‭ActionTargets‬

‭ShowDebugInfo‬ ‭Show the debug info, for example rotation‬
‭chunks.‬

‭TargetGameObject‬ ‭GameObject on which to perform desired‬
‭action.‬

‭SetStateOnDone‬ ‭When the action of the current GameObject‬
‭is finished, should it set the desired next‬
‭state of the SwitchController?‬

‭SetNextState: Set the desired next state.‬

‭DoNotSetNextState: Action of this object is‬
‭not relevant for state change.‬

‭SetNextStateCombined: Only if other‬
‭ActionTargets with the same state are‬
‭finished as well, the desired next state will‬
‭be set.‬

‭IsDone‬ ‭The action of the current GameObject was‬
‭finished.‬

‭UseSetActive‬ ‭On ‘Activated’ will enable GameObject, on‬
‭‘Deactivated’ disable.‬

‭UseRotation‬ ‭Rotate the target object?‬

‭CurrentRotationProgress(ReadOnly)‬ ‭Progress in percent of the delta rotation.‬

‭UseExtendedRotationSettings‬ ‭Enable extended settings.‬

‭RotationSpeed‬ ‭Speed of rotation steps.‬

‭RotationSpeedFlow‬ ‭Chart for more control of speed. X-Axis:‬
‭from 0-1 lifetime of action, Y-Axis: Speed‬
‭multiplier.‬

‭InternalRotationModel(Debug only)‬ ‭Shows extended data of rotation steps.‬

‭InternalPreviousRotationModel(Debug only)‬ ‭Shows extended data of previous rotation‬

‭steps.‬

‭RotationOnActivated‬ ‭Rotation angles which should be reached‬
‭on Activated state.‬

‭RotationOnDeactivated‬ ‭Rotation angles which should be reached in‬
‭the Deactivated state.‬

‭UseSeparateSFlowOnDeactivating‬ ‭Separate settings for Deactivating state, if‬
‭not used, will use RotationSpeedFlow.‬

‭RotationSpeedFlowOnDeactivating‬ ‭Chart for more control of speed. X-Axis:‬
‭from 0-1 lifetime of action, Y-Axis: Speed‬
‭multiplier.‬

‭UseSwingLoopOnActivating‬ ‭Should third angle be used with constant‬
‭bidirectional rotation from ‘Activated’ axis to‬
‭third axis.‬

‭If it's desired to create a swinging object, in‬
‭rotation settings the “useSwingLoop” option‬
‭can be used. It adds to “Activating” state‬
‭another axis configuration. So on Activating‬
‭the “TargetObject” rotates from‬
‭OnDeactivated Rotation axis->‬
‭onActivatedRotationAxis and from there to‬
‭SwingLoop and from there goes back to‬
‭Activated axis‬
‭repeating(SwingLoop->Activated,‬
‭Activated->SwingLoop,‬
‭SwingLoop->Activated…).‬

‭RotationSwingLoopWhileOnActivating‬ ‭Rotation angles which should go from‬
‭Activated angles on Activating state to this‬
‭angles and reverse.‬

‭UseSeparateSFlowForSwing‬ ‭Separate setting for SwingLoop, if not used,‬
‭will use RotationSpeedFlow.‬

‭RotationSpeedFlowSwing‬ ‭Chart for more control of speed. X-Axis:‬
‭from 0-1 lifetime of action, Y-Axis: Speed‬
‭multiplier.‬

‭UseMovement‬ ‭Move the target object between two‬
‭‘localPositions’?‬

‭CurrentMovementProgress‬ ‭Progress in percent of the delta movement.‬

‭UseExtendedMovementSettings‬ ‭Enable extended settings.‬

‭MovementSpeed‬ ‭Speed of movement steps.‬

‭PositionOnActivated‬ ‭localPosition which should be reached on‬
‭Activated state.‬

‭PositionOnDeactivated‬ ‭localPosition which should be reached on‬
‭Deactivated state.‬

‭MovementSpeedFlow‬ ‭Chart for more control of speed. X-Axis:‬
‭from 0-1 lifetime of action, Y-Axis: Speed‬
‭multiplier.‬

‭UseSeparateMSFlowOnDeactivating‬ ‭Separate settings for Deactivating state, if‬
‭not used, will use MovementSpeedFlow.‬

‭MovementSpeedFlowOnDeactivating‬ ‭Chart for more control of speed. X-Axis:‬
‭from 0-1 lifetime of action, Y-Axis: Speed‬
‭multiplier.‬

‭UseScale‬ ‭Similar to “UseMovement” but for scaling,‬
‭see movement properties for more‬
‭explanation.‬

‭UseSounds‬ ‭Should sounds be used?‬

‭AudioSource‬ ‭Audio source for ‘OneShot’ sounds. If not‬
‭set, will be created automatically on the‬
‭target GameObject. For more control of‬
‭audio settings, create one and configure it.‬

‭AudioSourceForLoopSounds‬ ‭Audio source for ‘Looping’ sounds. If not‬
‭set, will be copied automatically from‬
‭‘AudioSource’ to the target GameObject.‬
‭If ‘AudioSource is not set, it will be created‬
‭automatically.’ For more control of audio‬
‭settings, create one and configure it.‬

‭SoundActivationStarted‬ ‭AudioClip to play on Activating state‬
‭beginning.‬

‭SoundActivationInProgress‬ ‭Second audioClip to play on Activating‬
‭state beginning, supports looping.‬

‭LoopSoundActivationInProgress‬ ‭AudioClip should be looping.‬

‭SoundActivationEnded‬ ‭AudioClip to play on Activating state finish.‬

‭SoundDeactivationStarted‬ ‭AudioClip to play on Deactivating state‬
‭beginning.‬

‭SoundDeactivationInProgress‬ ‭Second audioClip to play on Deactivating‬
‭state beginning, supports looping.‬

‭LoopSoundDeactivationInProgress‬ ‭AudioClip should be looping?‬

‭SoundDeactivationEnded‬ ‭AudioClip to play on Deactivating state‬
‭finish.‬

‭SoundRotationSwingLoop‬ ‭AudioClip to play on swing loop action.‬

‭SoundRotationSwingPlayMode‬ ‭PlayAtDirectionSwitch: Play sound each‬
‭time SwingLoop changes its direction.‬

‭Delayed: Play with delay‬
‭RepeatPercentPassed: Play the sound‬
‭cumulative percent passed. For example‬
‭5-> 5%,10%,15%..‬

‭SoundRotationSwingLoopDelayTime‬ ‭Delay time in seconds‬

‭RepeatForPercentPassed‬ ‭Repeat each percent‬

‭LastSoundState(ReadOnly)‬ ‭Internal last sound state‬

‭CurrentSoundState(ReadOnly)‬ ‭Internal current sound state‬

‭SubSwitchControllers‬

‭When operation has finished on ActionTarget after the state is set to new one its possible to‬
‭send state changing events to other objects that have SwitchController attached to them.‬
‭This way it's easily possible to create chaining events. For example some switch has been‬
‭triggered, the door is opening, after that ground starts to move when its finished, trap‬
‭disappears.‬

‭This is done by adding “SubSwitchControllers” to the‬
‭“SubSwitchControllerToTriggerOnStateChange” list. Is possible to delegate state only if the‬
‭owner SwitchController has a specific state or/and rewrite the current state to another one‬
‭for SubSwitchController.‬

‭For example ObjA has finished, Set its own state from Activating to Activated, then iterate‬
‭through SubSwitchControllers in the list and set Activating on them. Other SwitchControllers‬
‭will get state Activating and do actions. Switch stepped on->moving itself to‬
‭ground->finished->open door1, open door2.‬

‭Field Definitions‬

‭SubSwitchControllersToTriggerOnStateChange‬

‭TargetGameObjectWithSController‬ ‭Other GameObjects with SwitchControllers‬
‭to set new state on.‬

‭OwnStateRequiredToBeIn‬ ‭Precondition needed its own state to set‬
‭state on target.‬

‭RewriteAnyStateWith‬ ‭Transfer: Sends its own state to target.‬
‭Toggle: Sets target state to opposite state.‬
‭Others: Set the given state.‬

‭DeOrActivateToDeOrActivating‬ ‭If the own state is in Activated, set it to‬

‭Activating on target, same for‬
‭Deactivated->Deactivating.‬

‭InvertStatesForTargetSControllers‬ ‭Activating->Deactivating,‬
‭Deactivating->Activating.‬
‭Same can be done with using rules with‬
‭‘RewriteAnyStateWith’‬

‭IgnoreStateProtection‬ ‭Disables preconditions on target‬
‭SwitchController‬

‭AdvancedSettings‬ ‭Enables advanced settings‬

‭DelayInSeconds‬ ‭Set a new state with delay after given‬
‭seconds.‬

‭BlockSubSwitchEvents‬ ‭Set state on target SwitchController but‬
‭block it from changing the state on its‬
‭SubSwitchControllers when actions on it‬
‭are done.‬

‭Parameters‬ ‭Parameters are string combinations which‬
‭can be sent to give extra options.‬

‭You can add your own parameters on your‬
‭custom SwitchControllers inside‬
‭OnSetStateByCaller method.‬
‭Parameters can be combinated ’paramOne,‬
‭paramTwo’‬

‭Current build in parameters:‬
‭—--‬
‭MainSwitchController:‬

‭‘Ignorestatechangenow:true’ : ignores the‬
‭given state change‬

‭‘sleep:true’/’sleep:false’ : sets‬
‭SwitchController to sleep‬
‭—--‬
‭NodeWalkerSwitchController:‬

‭‘Ignorestatechangenow:true’ : ignores the‬
‭given state change‬

‭‘sleep:true’/’sleep:false’ : sets‬
‭SwitchController to sleep‬

‭‘nodewalker:reversedir’ :reverse movement‬
‭direction‬
‭—--‬

‭OwnStateRequiredToBeInVariation‬ ‭Change this flag only in your custom‬
‭SwitchControllers depending on your‬
‭implementation, it changes the options in‬
‭the ‘OwnStateRequiredToBeIn’ dropdown.‬

‭Preconditions‬

‭Sometimes it is needed to create preconditions to block state change of SwitchController or‬
‭rewrite state by specific constellation. For example lan leaver can be only activated if other‬
‭leavers are set with specific states. To block the leaver from activating preconditions can be‬
‭used.‬

‭The preconditions are to read from top to down. “CombineWithNextCondition” combines‬
‭expression with the next condition if it's set to “And”. In Case of “Or” it's acting on its own‬
‭without combining to the next expression.‬

‭“... Preconditions”: Preconditions which needs to be met before own state can be changed‬
‭by another SController‬

‭“AutoOverrideState..”: Automatically sets the SwitchControllers state to desired if targets‬
‭change. It ignores the internal state check.‬

‭Field Definitions‬

‭Precondition‬

‭OtherGoWithSController‬ ‭Depending on the state of given‬
‭GameObjects SwitchController.‬

‭PreState‬ ‭Given objects state needs to be in.‬

‭CombineWithNextCondition‬ ‭‘And’ combines with the next condition, ‘Or’‬
‭works as a standalone condition.‬

‭4.2 NodeWalkerSwitchController‬
‭Handles:‬

‭-‬ ‭Movement between multiple positions(nodes).‬
‭-‬ ‭Looping on default on the nodes.‬
‭-‬ ‭Can stop and trigger other SwitchControllers passing on nodes.‬
‭-‬ ‭Moves on ‘Activating’ state, custom configuration on Deactivating state.‬

‭With MainSwitchController you can set movement between two positions but if you want to‬
‭create something that can run between multiple positions or loop on them the‬
‭NodeWalkerSwitchController can be used.‬‭Do not use‬‭MainSwitchController with movement‬
‭options and NodeWalker on the same TargetGameObject they will conflict.‬

‭NodeWalkerSwitchController uses part of the same settings as MainSwitchController. Please‬
‭refer to the missing pieces to the explanation above!‬

‭Unlike the MainSwitchController you cannot add a list of ActionTargets, you are moving‬
‭around only one object which is TargetForAction. It's best practice to add the target object‬
‭into a parent object and set its localPosition to 0. then you can move it around and add‬
‭movement nodes where you want the object to move. On Activated state the object will‬
‭move to the nodes. In AdvancedSettingsConfiguration you can set WaitOnNodeForSeconds‬
‭time if you want the object to wait on the Node. you can also trigger other‬
‭SubSwitchControllers when you reach the Node or after waiting time has finished.‬

‭It's possible to set movement rotation to the direction of which the object is facing when it‬
‭reaches the nodes.‬‭In the next updates I will add‬‭more functions for rotation on Nodes.‬

‭you can also define which actions the object should take when it is getting into state of‬
‭Deactivating.‬

‭NodeWalkerSwitchController‬

‭For missing fields, see above‬
‭‘MainSubSwitchController’ explanation‬

‭NextNodeIndex‬ ‭Node index, where TargetObject is moving‬
‭to.‬

‭LastReachedNodeIndex‬ ‭Last reached Node index.‬

‭IsWaitingOnNode‬ ‭Is the targetObject waiting on Node‬
‭currently?‬

‭GameObjectTargetForAction‬ ‭TargetObject to move on nodes.‬

‭MovementDirection‬ ‭Movement direction of TargetObject.‬

‭MovementRotation‬ ‭Movement rotation option.‬

‭MovementRotationSpeed‬ ‭Speed of movement rotation.‬

‭ShouldLoopOnActivating‬ ‭Should move in a loop, from last node to‬
‭first node when reached?‬

‭DoOnDestinationReached‬ ‭Options for actions to take when reaching‬
‭the last node in a non looping context.‬

‭DoOnDeactivating‬ ‭Which actions should be taken when the‬
‭NodeWalker state is state to Deactivating?‬

‭DeactivatedDestinationNodeIndex‬ ‭Node index for DoOnDeactivating action.‬

‭ReverseDirectionAfterDeactivated‬ ‭Should the direction be reversed/inverted‬
‭after the Deactivated state has been set.‬

‭MovementNodes‬ ‭List of nodes to move to with configurations.‬

‭MovementNodes‬

‭Position‬ ‭Position of node to where the TargetObject‬
‭should move to.‬

‭MovementSpeed‬ ‭Speed of the movement.‬
‭(Will add SpeedFlow chart next updates)‬

‭AdvancedSettingsConfiguration‬ ‭Expand advanced settings.‬

‭WaitOnNodeForSeconds‬ ‭Wait an amount of seconds on the node‬
‭and then keep moving.‬

‭SubSwitchControllersToTriggerAfterWait‬ ‭After waiting has finished on the node, set‬
‭state on given SubSwitchControllers.‬

‭see above ‘MainSubSwitchController’‬
‭explanation‬

‭SubSwitchControllersToTriggerOnReached‬ ‭When reached the node, set state on given‬
‭SubSwitchControllers.‬

‭see above ‘MainSubSwitchController’‬
‭explanation‬

‭4.3 CustomSwitchController_ConstantRotator‬

‭Handles:‬
‭-‬ ‭Constant rotation of TargetObject by given speed on an axis.‬

‭Simple SwitchController that is used to constantly rotate objects.‬

‭For missing fields, see above‬
‭‘MainSubSwitchController’ explanation‬

‭GameObjectTargetForAction‬ ‭TargetObject to rotate.‬

‭RotationDirectionSpeed‬ ‭Rotation speed for each axis to rotate. Use‬
‭-x, -y,-z to Rotate opposite.‬

‭4.4 CustomSwitchController_SwitchMaterial‬

‭Handles:‬
‭-‬ ‭Switches/Replaces materials by given material slot/index.‬
‭-‬ ‭Sets material by given material slot/index.‬

‭By given materials this SwitchController can depending on the state switch/replace‬
‭materials.‬

‭Or it can set a material by index. If the renderer has less materials, the list will be increased.‬

‭For missing fields, see above‬
‭‘MainSubSwitchController’ explanation‬

‭GameObjectTargetWithMaterial‬ ‭Target GameObject to switch materials on.‬

‭Mode‬ ‭SwitchMaterials: Switch one material to‬
‭another one and back depending on state.‬

‭SetMaterial: Set material to desired on‬
‭Activated or Deactivated.‬

‭AffectedMaterialSlot‬ ‭Affected material slot/index of the mesh‬
‭renderer.‬

‭StateRequiredForAction‬ ‭On which state to perform the desired‬
‭action.‬

‭MaterialActivated‬ ‭Material to set on Activated state.‬

‭MaterialDeactivated‬ ‭Material to set on Deactivated state.‬

‭MaterialForAction‬ ‭Material to set on action.‬

‭4.5 CustomSwitchController_CombinationProxy‬

‭Handles:‬
‭-‬ ‭Simple combine of states on multiple SwitchControllers to set other‬

‭SubSwitchControllers depending on them.‬

‭When all callers match the same state ‘Activated’ (or by inverting with‬
‭‘InvertExternalStateChange’ -> Deactivated) the SubSwitchControllers will set to Activating.‬
‭The same or even more advanced effect can be reached by using preconditions on‬
‭MainSwitchController and NodeWalker! It's just a weaker all-around version of that, which‬
‭can be used with any SwitchController.‬

‭By setting DefaultStateWhenNotCombined to something else than ‘ignore’ it will emit to‬
‭SubSwitchControllers chosen state if the caller SwitchControllers does not match same‬
‭combination.‬

‭On Example screenshot you can see the following setting: If caller element0 and 2 is set to‬
‭Activated and element1(inverted) to Deactivated, the SubSwitch-Dummy will be set to‬
‭Activating. If the Caller constellation is opposite, the subSwitchController will be set to‬
‭Deactivating.‬

‭By using DefaultStateWhenNotCombined -> Deactivated for example it needs only one‬
‭wrong caller to set the SubSwitchControllers to Deactivated state.‬

‭CurrentState‬ ‭Current state of the SwitchController‬

‭DefaultStateWhenNotCombined‬ ‭When the caller combination is not in same‬
‭state (or by inverting) this default state will‬
‭be set.‬

‭Callers‬

‭OtherSwitchControllers_ToTriggerOnStatus‬
‭Change‬

‭SubSwitchControllers to set state when this‬
‭controller's state changes.‬

‭Simpler version of previously explained‬
‭field.‬

‭Callers‬

‭LastStateReceived(ReadOnly)‬ ‭Last state of the caller that is known‬

‭OtherSwitchController_Caller‬ ‭The GameObject with SwitchController that‬
‭has an impact on the SubSwitchControllers‬
‭state.‬

‭InvertExternalStateChange‬ ‭To change the state of SubSwitch‬
‭controllers all callers must have the same‬
‭state or they can invert by this field the‬
‭condition.‬

‭For example with three callers:‬
‭0: Activated,‬
‭1: Deactivated(Inverted)‬
‭2: Activated‬

‭SubSwitchControllers = Activating‬

‭4.6 CustomSwitchController_ToggleStateFilterProxy‬

‭Handles:‬
‭-‬ ‭Sets state of target Switch controller only if certain state is received‬

‭Standalone weaker version to do the same as the ‘RewriteAnyStateWith’ field on the‬
‭SubSwitchController list.’ Useful in custom scripts without implementing‬
‭SubSwitchControllerSettingModel.‬

‭4.6 Create your own SwitchControllers‬
‭You can easily connect your scripts as SubSwitchControllers to other SwitchControllers by‬
‭implementing the‬‭ISwitchController‬‭interface. They‬‭will automatically receive icons in the‬
‭hierarchy window and you will be able to change their state by other SControllers.‬

‭Copy, rename the file CustomSwitchController_TemplateYourScriptExample.cs and add your‬
‭logic. After that you can add them to any SubSwitchController field.‬

‭ISwitchController interface wants you to implement those methods:‬
‭-‬ ‭GetGameObjectAttachedTo‬‭: Used by hierarchy window‬‭icon draw. Do not change it!‬
‭-‬ ‭GetCurrentStateByCaller‬‭: To read the current state.‬‭Do not change it!‬
‭-‬ ‭OnSetStateByCaller‬‭: Other SwitchControllers or StateSetter‬‭where you attach your‬

‭SwitchController will write to this Method a new state. You can write your full logic‬
‭here if you don't want to use Update Method.‬

‭5. Usage SwitchControllerStateSetter‬
‭To set SwitchController state it is needed to call its OnSetStateByCaller(...) method. Scripts‬
‭which are doing it and are not SwitchControllers themself, which dont have their own state,‬
‭are defined here as “StateSetter”.‬

‭5.1 OnCollision_SwitchControllerStateSetter‬
‭Handles:‬

‭-‬ ‭Sets a state of SwitchControllers depending on collision events.‬

‭This script can be used to activate switches if you step on them, changing the state of‬
‭SwitchControllers by colliding with a collider.‬

‭You can add multiple target objects with SwitchControllers into the configuration list.‬
‭Define the “LayersForCollisionDetection”‬‭or else unwanted‬‭GameObjects will trigger the‬
‭state change on SwitchControllers.‬

‭Similar implementation is used by the‬‭ExampleButtonClick_SwitchControllerStateSetter.cs‬
‭but adds InputEvent for old EventSystem. So after Player collides with collider he needs to‬
‭press the right key to switch state of the attached GameObject.‬
‭Look into them to create your own StateSetters depending on your needs.‬
‭The UiTextComponent is optional in the demo script.‬

‭5.2 Create your own SwitchControllerStateSetter‬
‭To create your own StateSetter scripts simply get objects with SwitchControllers (That‬
‭implements ISwitchController) and call OnSetStateByCaller on them. Add implementation of‬
‭IStateSetter interface to your script to make it receive an icon in the hierarchy view.‬

‭You can use the example to simply create your StateSetter.‬
‭Copy, rename the file‬‭SwitchControllerStateSetter_TemplateYourScriptExample.cs‬‭and add‬
‭your logic or look at‬‭OnCollision_SwitchControllerStateSetter.cs‬‭or‬
‭ExampleButtonClick_SwitchControllerStateSetter.cs‬‭.‬‭After that you can set the states of‬
‭SwitchControllers.‬

‭6. Visualization and Configuration‬
‭Switch and trap provides three types of helpers for your project :‬

‭-‬ ‭The coloring in the inspector‬
‭-‬ ‭The icons in hierarchy window that indicates which script is attached‬
‭-‬ ‭The gizmos in the scene window which shows connection of SwitchControllers. They‬

‭support MainSwitchController and NodeWalker the best.‬

‭If you don't want to use any of these you can turn the options off:‬

‭6.1 The coloring in the inspector‬
‭The SwitchControlles provides you with a lot of options to control objects. The coloring helps‬
‭to keep easier track of main fields(blue tones) and optional or advanced settings (green‬
‭tones). Other colors helps to keep apart some other settings.‬

‭6.2 Hierarchy icons‬
‭To keep better control on attached scripts to objects there is an option to show the kitten‬
‭icons on the hierarchy window. The border indicates which kind of script is attached. You can‬
‭implement existing light interfaces in your custom scripts to mark them with icons.‬

‭MainSwitchController is attached.‬

‭NodeWalker is attached.‬

‭ConstantRotator is attached.‬

‭Any other script which implements the‬
‭“ISwitchController” interface is attached.‬
‭Could be yours. just implement the‬
‭ISwitchController interface. This will add‬
‭icon and allow your script to be‬
‭chain-connected with SwitchControllers.‬

‭Implement those methods:‬

‭OnSetStateByCaller(..)‬
‭and‬
‭OnGetStateByCaller();‬

‭Scripts attached that can set the state of‬
‭SwitchControllers for example scripts on‬
‭collider which activates buttons, see‬
‭“OnCollision_SwitchControllerStateSetter”‬‭.‬
‭You can create custom scripts and‬
‭implement “IStateSetter” to add to them the‬
‭icon.‬

‭6.3 Gizmos in scene view‬
‭To help visualize the connection between SwitchControllers you can use the‬
‭SwitchNTrap-gizmos. The color indicators and labels show the configuration of the‬
‭SwitchControllers.‬

‭The lines for MianSwitchController can show the state transmission to other‬
‭SwitchControllers or preconditions and positions. Compare the gizmos on demo scenes with‬
‭the scripts to fully understand the meaning of the indicators and colors.‬

‭To easily read the labels, zoom-in the object by focusing it first with the button “F” and rotate‬
‭the perspective.‬

‭Sometimes you don't want to see labels because they can overload the view. just turn them‬
‭off locally by clicking the checkbox.‬

‭This way you get better control on full configuration of complex connections.‬

‭7. Lever generator‬‭(in demo scene)‬

‭In the demo scene you can combine your custom levers.‬

‭Just step with the character on the ground switches to choose the materials.‬

‭Select in the scene the leaver, drag and drop it in your asset folder, give it a name.‬

