
 Documentation
 Version 1.2

 1. Introduction 2
 2. Installation 3

 Build-in 3
 URP 3
 HDRP 4

 3. Notes 7
 4. Usage SwitchControllers 8

 4.1 MainSwitchController (Please read before others, reusing explanations) 9
 Field Definitions 10

 Action Targets 11
 SetActive 12
 Movement 12
 Teleportation 12
 Scale 12
 Rotation 13
 ExtendedOptions 13
 SwingLoop 14
 Sounds 14
 Field Definitions 15

 SubSwitchControllers 18
 Field Definitions 19

 Preconditions 21
 Field Definitions 22

 4.2 NodeWalkerSwitchController 22
 4.3 CustomSwitchController_ConstantRotator 25
 4.4 CustomSwitchController_SwitchMaterial 26
 4.5 CustomSwitchController_CombinationProxy 27

 4.6 CustomSwitchController_ToggleStateFilterProxy 29
 4.6 Create your own SwitchControllers 30

 5. Usage SwitchControllerStateSetter 31
 5.1 OnCollision_SwitchControllerStateSetter 31
 5.2 Create your own SwitchControllerStateSetter 32

 6. Visualization and Configuration 32
 6.1 The coloring in the inspector 33
 6.2 Hierarchy icons 34
 6.3 Gizmos in scene view 35

 7. Lever generator (in demo scene) 38

 1. Introduction
 SwitchNTrap is a compact, state based controlling system for traps, elevators, switches,
 levers, doors and much more. The main workflow is based primarily on rotation and
 movement of objects. You can easily create chaining events for example if something is
 touching a specific object it opens a door somewhere, it moves a trap and after it's finished it
 does something else. SwitchNTrap comes with a pack of modular 3D PRB assets (that you
 can use standalone) for your dungeons or other types of environment.

 Create your own combination of materials for your custom lever in the demo scene with the
 Lever generator.

 The system supports any rotations without limits, movement on multiple position nodes,
 swinging of objects and manipulation of some extra options such as material switching.

 It provides visual support for better control of things in your scene. Drag and drop your
 sounds. You can build in minutes the whole interactive level after some practice. It can
 enhance your work in any kind of game greatly.

 Let your fantasy free!

 Latest documentation link
 If you need help use my discord channel:

 Help on Discord

http://www.titaniumworld.de/snt_documentation.pdf
https://discord.gg/wR87xZgrCD

 2. Installation
 Please do not move the package to other asset folders or the icons will not work. It will be
 supported in later versions.
 But you can safely move or copy prefabs and materials and place your custom scripts
 outside.

 For better understanding and visual experience it's best to test the demo scene in the
 build-in rendering pipeline project.

 Build-in

 1. Import the package.
 2. Open the demo scene “Assets\Savchenko\SwitchNTrap\DemoScene.unity” and look

 at the examples.

 URP
 1. Import the package.
 2. Open the demo scene “Assets\Savchenko\SwitchNTrap\DemoScene.unity”.
 3. Convert the materials/shaders to URP (Make copy of your project in case)
 4. (Optional) adjust Skybox and light for the demo scene. The Demo scene was made

 on Built-In RP and will look darker on URP on default.
 5. Look at the examples.

 HDRP
 1. Import the package.
 2. Open the demo scene “Assets\Savchenko\SwitchNTrap\DemoScene.unity”.
 3. Convert the materials to HDRP (Make copy of your project in case)
 4. (Optional) adjust Skybox and light for the demo scene. The Demo scene was made

 on Built-In RP and will look darker on HDRP on default.
 5. Look at the examples.

 6. If InputSystem error occurs. Fix it by setting “Active Input Handling” to “Both” in
 player settings.

 7. If some of the transparent materials turn black, give it some time(~5 minutes). If it
 wont help, select light in the scene and if it still wont help, check those few materials
 and set “Surface Type” to transparent. I will include separate packages in later
 versions for all rendering pipelines.

 3. Notes
 - For scene-view gizmos, button “F” is your best friend. Focus on objects with

 SwitchController to have a better visualization on it.
 - For gizmos visualization MainSwitchController or NodeWalker must be selected and

 gizmos must be turned on.

 - Do not move SwitchNTrap to other directories in the assets folder. It's not supporting
 it right now, but will change in a later version.

 - While using movement or rotation manipulating SwitchControllers do not change the
 rotation or rotation by other scripts or events (RigidBody physics) on the same
 ActionTarget or it could lead to not expected results.

 - The hierarchy icons use lazy load to not hit on performance of the editor. By selecting
 items, icons will reload.

 - Use demo scene for examples
 - Make a copy of prefabs if you want to modify them or else the demo scene can

 break.
 - For easier configuration of target objects for movement or rotation, place them into

 parents.
 - For use on older mobiles: The assets have mid-poly count and could be used in older

 mobile devices as well. In case the performance hits, the materials must be reduced
 and the maximum texture size must be decreased in configuration for that. (duplicate
 material, remove Normal- Map, heightmap… til it fits your needs)

 4. Usage SwitchControllers
 SwitchControllers are working as state machines. There are basic four states:

 - Deactivated: Deactivating task is done.
 - Activating: Task is doing job and is transferring itself on finish to Activated .
 - Activated: Activating task is done.
 - Deactivating: Task is doing job and is transferring itself on finish to Deactivated .

 Depending on the script the tasks vary.
 Some scripts are reduced to Activated/Deactivated state instead of Activating->Activated.
 All positions used in the configuration are “localPositions” so you might put TargetObjects
 into parents to easier setup the positions from 0.

 The scripts that implement ISwitchController can be connected in chains. You can easily
 write your own scripts that will work with others in a chain.
 Look at the demo scene for examples or you can just drag and drop combinations to the
 asset folder to create prefabs for your game from it.

 All SwitchControllers implement ISwitchController interface.
 You can easily set the state of any SwitchController inside any of your
 scripts by calling for example (for Activating):

 var switchController = targetGameObject .GetComponent< ISwitchController >();
 switchController .OnSetStateByCaller(TriggerStateEnum. Activating);

 look for example on OnCollision_SwitchControllerStateSetter.

 You can get current state by:
 switchController .OnGetStateByCaller();

 There are also a lot of public fields which you can access depending on the script.

 4.1 MainSwitchController (Please read before others, reusing
 explanations)
 Handles:

 - movement between two positions.
 - rotation from an angle to an angle. Can create swinging movement with a third angle.

 Supports negative rotations if you want to rotate in specific direction and there is no
 limit in rotation angle(You can rotate for example 3600° or -3600° 10 times around)

 - SetActive (Enable/Disable) object . Note: Do not put the script for SetActive on the
 same object as the action target, because else it will disable the script on
 Deactivated state.

 - adding sounds for each state and situation.

 The concept is to have “ActionTarget” which should be moved rotated ot SetActive.
 After the task is done depending on configuration the state of the SwitchController will
 change and notify “SubSwitchControllersToTriggerOnStateChange” if needed. You can add
 multiple “ActionTargets” and multiple “SubSwitchControllers”.

 Field Definitions

 StartState State on load of the script.

 For example on MainSwitchController, on
 start will set rotation or position given in
 rotation and movement settings if set.

 OverrideCurrentStateWithStartStateOnStart Should the current state be instantly
 overloaded by the start state on start
 without executing state changing tasks?

 OldState (ReadOnly) Previous state.

 CurrentState Current state of SwitchController.

 Sleep Pauses all update actions. The state can
 still be set from outside.

 TriggeredCount (ReadOnly) How many state changing events had been
 received.

 TriggeredCountWithActionFinish
 (ReadOnly)

 Count of how many times triggered with
 successful finished action. Useful if for
 example a switch should trigger something
 if exactly 3 times triggered.

 ActionTargets Configuration for GameObjects to perform

 action on.

 SubSwitchControllersToTriggerOnStateCha
 nge

 Other GameObjects with SwitchControllers
 that are connected to the state change of
 this one. This is needed to create chaining
 events. If state of this SController changes
 it will trigger the configuration to change
 state on SubSwitchControllers(connected
 SwitchControllers)

 IsOnlyOnceTriggable Only one state changing event is allowed,
 others after will be blocked.

 InvertOwnExternalStateChange If activated the state changing attempts
 from outside will be inverted.
 Activating->Deactivating,Deactivating->Acti
 vating.

 RestoreStartStateAfterTrigger Automatically restores the start state after
 state changing action was received and
 finished.

 PreconditionsForOwnStateChange Conditions when to execute state changing
 actions or rewrite depending on other
 SControllers.

 Action Targets

 The Action Target contains definitions for tasks. The field “TargetGameObject” is any
 “GameObject” that should be moved for example. With “SetStateOnDone” you can let the
 task change the state only on specific conditions. For example if you want to rotate
 something but it should not be relevant for state change you can mute it.

 SetActive

 To deactivate on Deactivated state or activate on Activated state the TargetGameObject
 mark “SetActive”. It disables other options .

 Movement

 For basic movement mark “UseMovement”.
 For example, given the data on the following snippet, “PositionOnActivated” means that on
 “Activating” it will move to x:10,y:0,z:0 and switch controllers state to “Activated” if no extra
 tasks are given to wait for. On “Deactivating ” the reverse to “.localPosition=Vector3(0,0,0)”.

 Teleportation

 To Teleport on any stateChange the TargetGameObject set
 PositionOnActivated=PositionOnDeactivated but not x:0y:0z:0.

 For example:

 will teleport the TargetGameObject to “localPosition” x:100,y:10,z:0 if the state changes.

 Scale

 For basic scale mark “UseScale”. Similar to movement settings!
 For example, given the data on the following snippet, “ScaleOnActivated” means that on
 “Activating” it will scaleto x:1,y:0.5,z:-2 and switch controllers state to “Activated” if no extra
 tasks are given to wait for. On “Deactivating ” the reverse to “.localScale=Vector3(0.3,1,2)”.

 Rotation

 For basic rotation mark “UseRotation”.
 The same game goes here. Set which rotation you want the TargetObject to have on each
 state. The Rotation direction can go in a positive or negative direction. The rotations can go
 over (+/-)360° degrees. By “ShowDebugInfo” check you can see what exactly is done with
 rotation chunks.

 ExtendedOptions
 By expanding “ExtendedOptions” you can do even more.

 For example, instead of using linear speed you can use “SpeedFlow” . This chart represents
 for X-axis the lifetime of a task from 0 to 1 (1=100% done) and on Y-axis the speed
 multiplier. By using it you can make for example that something moves faster or slower on
 certain progress.

 Rotation supports rotating of the “TargetGameObject” in any direction (-/+) and any Angle. If
 the delta angle is used over 360° it will spin over.

 SwingLoop

 If it's desired to create a swinging object, in rotation settings the “useSwingLoop” option can
 be used. It adds to “Activating” state another axis configuration. So on Activating the
 “TargetObject” rotates from OnDeactivated Rotation axis-> onActivatedRotationAxis and
 from there to SwingLoop and from there goes back to Activated axis
 repeating(SwingLoop->Activated, Activated->SwingLoop, SwingLoop->Activated…).

 Sounds

 You can add sounds for progress states of rotation and movement.

 If it's desired to use looping repeating sounds for progress mark “Loop” checkbox.

 SwitchConroller automatically generates AudioSources for “OneShot” and “Looping” sounds,
 if the component has Audio source it will be used or copied. So if extended control over
 sound is needed please add AudioSource on the TargetObject with custom configuration.

 Swing Loop sounds have some extra sound options to repeat the sounds delayed, progress
 based or by direction change. More options for sounds will be added in later releases to
 other configurations.

 Field Definitions

 ActionTargets

 ShowDebugInfo Show the debug info, for example rotation
 chunks.

 TargetGameObject GameObject on which to perform desired
 action.

 SetStateOnDone When the action of the current GameObject
 is finished, should it set the desired next
 state of the SwitchController?

 SetNextState: Set the desired next state.

 DoNotSetNextState: Action of this object is
 not relevant for state change.

 SetNextStateCombined: Only if other
 ActionTargets with the same state are
 finished as well, the desired next state will
 be set.

 IsDone The action of the current GameObject was
 finished.

 UseSetActive On ‘Activated’ will enable GameObject, on
 ‘Deactivated’ disable.

 UseRotation Rotate the target object?

 CurrentRotationProgress(ReadOnly) Progress in percent of the delta rotation.

 UseExtendedRotationSettings Enable extended settings.

 RotationSpeed Speed of rotation steps.

 RotationSpeedFlow Chart for more control of speed. X-Axis:
 from 0-1 lifetime of action, Y-Axis: Speed
 multiplier.

 InternalRotationModel(Debug only) Shows extended data of rotation steps.

 InternalPreviousRotationModel(Debug only) Shows extended data of previous rotation

 steps.

 RotationOnActivated Rotation angles which should be reached
 on Activated state.

 RotationOnDeactivated Rotation angles which should be reached in
 the Deactivated state.

 UseSeparateSFlowOnDeactivating Separate settings for Deactivating state, if
 not used, will use RotationSpeedFlow.

 RotationSpeedFlowOnDeactivating Chart for more control of speed. X-Axis:
 from 0-1 lifetime of action, Y-Axis: Speed
 multiplier.

 UseSwingLoopOnActivating Should third angle be used with constant
 bidirectional rotation from ‘Activated’ axis to
 third axis.

 If it's desired to create a swinging object, in
 rotation settings the “useSwingLoop” option
 can be used. It adds to “Activating” state
 another axis configuration. So on Activating
 the “TargetObject” rotates from
 OnDeactivated Rotation axis->
 onActivatedRotationAxis and from there to
 SwingLoop and from there goes back to
 Activated axis
 repeating(SwingLoop->Activated,
 Activated->SwingLoop,
 SwingLoop->Activated…).

 RotationSwingLoopWhileOnActivating Rotation angles which should go from
 Activated angles on Activating state to this
 angles and reverse.

 UseSeparateSFlowForSwing Separate setting for SwingLoop, if not used,
 will use RotationSpeedFlow.

 RotationSpeedFlowSwing Chart for more control of speed. X-Axis:
 from 0-1 lifetime of action, Y-Axis: Speed
 multiplier.

 UseMovement Move the target object between two
 ‘localPositions’?

 CurrentMovementProgress Progress in percent of the delta movement.

 UseExtendedMovementSettings Enable extended settings.

 MovementSpeed Speed of movement steps.

 PositionOnActivated localPosition which should be reached on
 Activated state.

 PositionOnDeactivated localPosition which should be reached on
 Deactivated state.

 MovementSpeedFlow Chart for more control of speed. X-Axis:
 from 0-1 lifetime of action, Y-Axis: Speed
 multiplier.

 UseSeparateMSFlowOnDeactivating Separate settings for Deactivating state, if
 not used, will use MovementSpeedFlow.

 MovementSpeedFlowOnDeactivating Chart for more control of speed. X-Axis:
 from 0-1 lifetime of action, Y-Axis: Speed
 multiplier.

 UseScale Similar to “UseMovement” but for scaling,
 see movement properties for more
 explanation.

 UseSounds Should sounds be used?

 AudioSource Audio source for ‘OneShot’ sounds. If not
 set, will be created automatically on the
 target GameObject. For more control of
 audio settings, create one and configure it.

 AudioSourceForLoopSounds Audio source for ‘Looping’ sounds. If not
 set, will be copied automatically from
 ‘AudioSource’ to the target GameObject.
 If ‘AudioSource is not set, it will be created
 automatically.’ For more control of audio
 settings, create one and configure it.

 SoundActivationStarted AudioClip to play on Activating state
 beginning.

 SoundActivationInProgress Second audioClip to play on Activating
 state beginning, supports looping.

 LoopSoundActivationInProgress AudioClip should be looping.

 SoundActivationEnded AudioClip to play on Activating state finish.

 SoundDeactivationStarted AudioClip to play on Deactivating state
 beginning.

 SoundDeactivationInProgress Second audioClip to play on Deactivating
 state beginning, supports looping.

 LoopSoundDeactivationInProgress AudioClip should be looping?

 SoundDeactivationEnded AudioClip to play on Deactivating state
 finish.

 SoundRotationSwingLoop AudioClip to play on swing loop action.

 SoundRotationSwingPlayMode PlayAtDirectionSwitch: Play sound each
 time SwingLoop changes its direction.

 Delayed: Play with delay
 RepeatPercentPassed: Play the sound
 cumulative percent passed. For example
 5-> 5%,10%,15%..

 SoundRotationSwingLoopDelayTime Delay time in seconds

 RepeatForPercentPassed Repeat each percent

 LastSoundState(ReadOnly) Internal last sound state

 CurrentSoundState(ReadOnly) Internal current sound state

 SubSwitchControllers

 When operation has finished on ActionTarget after the state is set to new one its possible to
 send state changing events to other objects that have SwitchController attached to them.
 This way it's easily possible to create chaining events. For example some switch has been
 triggered, the door is opening, after that ground starts to move when its finished, trap
 disappears.

 This is done by adding “SubSwitchControllers” to the
 “SubSwitchControllerToTriggerOnStateChange” list. Is possible to delegate state only if the
 owner SwitchController has a specific state or/and rewrite the current state to another one
 for SubSwitchController.

 For example ObjA has finished, Set its own state from Activating to Activated, then iterate
 through SubSwitchControllers in the list and set Activating on them. Other SwitchControllers
 will get state Activating and do actions. Switch stepped on->moving itself to
 ground->finished->open door1, open door2.

 Field Definitions

 SubSwitchControllersToTriggerOnStateChange

 TargetGameObjectWithSController Other GameObjects with SwitchControllers
 to set new state on.

 OwnStateRequiredToBeIn Precondition needed its own state to set
 state on target.

 RewriteAnyStateWith Transfer: Sends its own state to target.
 Toggle: Sets target state to opposite state.
 Others: Set the given state.

 DeOrActivateToDeOrActivating If the own state is in Activated, set it to

 Activating on target, same for
 Deactivated->Deactivating.

 InvertStatesForTargetSControllers Activating->Deactivating,
 Deactivating->Activating.
 Same can be done with using rules with
 ‘RewriteAnyStateWith’

 IgnoreStateProtection Disables preconditions on target
 SwitchController

 AdvancedSettings Enables advanced settings

 DelayInSeconds Set a new state with delay after given
 seconds.

 BlockSubSwitchEvents Set state on target SwitchController but
 block it from changing the state on its
 SubSwitchControllers when actions on it
 are done.

 Parameters Parameters are string combinations which
 can be sent to give extra options.

 You can add your own parameters on your
 custom SwitchControllers inside
 OnSetStateByCaller method.
 Parameters can be combinated ’paramOne,
 paramTwo’

 Current build in parameters:
 —--
 MainSwitchController:

 ‘Ignorestatechangenow:true’ : ignores the
 given state change

 ‘sleep:true’/’sleep:false’ : sets
 SwitchController to sleep
 —--
 NodeWalkerSwitchController:

 ‘Ignorestatechangenow:true’ : ignores the
 given state change

 ‘sleep:true’/’sleep:false’ : sets
 SwitchController to sleep

 ‘nodewalker:reversedir’ :reverse movement
 direction
 —--

 OwnStateRequiredToBeInVariation Change this flag only in your custom
 SwitchControllers depending on your
 implementation, it changes the options in
 the ‘OwnStateRequiredToBeIn’ dropdown.

 Preconditions

 Sometimes it is needed to create preconditions to block state change of SwitchController or
 rewrite state by specific constellation. For example lan leaver can be only activated if other
 leavers are set with specific states. To block the leaver from activating preconditions can be
 used.

 The preconditions are to read from top to down. “CombineWithNextCondition” combines
 expression with the next condition if it's set to “And”. In Case of “Or” it's acting on its own
 without combining to the next expression.

 “... Preconditions”: Preconditions which needs to be met before own state can be changed
 by another SController

 “AutoOverrideState..”: Automatically sets the SwitchControllers state to desired if targets
 change. It ignores the internal state check.

 Field Definitions

 Precondition

 OtherGoWithSController Depending on the state of given
 GameObjects SwitchController.

 PreState Given objects state needs to be in.

 CombineWithNextCondition ‘And’ combines with the next condition, ‘Or’
 works as a standalone condition.

 4.2 NodeWalkerSwitchController
 Handles:

 - Movement between multiple positions(nodes).
 - Looping on default on the nodes.
 - Can stop and trigger other SwitchControllers passing on nodes.
 - Moves on ‘Activating’ state, custom configuration on Deactivating state.

 With MainSwitchController you can set movement between two positions but if you want to
 create something that can run between multiple positions or loop on them the
 NodeWalkerSwitchController can be used. Do not use MainSwitchController with movement
 options and NodeWalker on the same TargetGameObject they will conflict.

 NodeWalkerSwitchController uses part of the same settings as MainSwitchController. Please
 refer to the missing pieces to the explanation above!

 Unlike the MainSwitchController you cannot add a list of ActionTargets, you are moving
 around only one object which is TargetForAction. It's best practice to add the target object
 into a parent object and set its localPosition to 0. then you can move it around and add
 movement nodes where you want the object to move. On Activated state the object will
 move to the nodes. In AdvancedSettingsConfiguration you can set WaitOnNodeForSeconds
 time if you want the object to wait on the Node. you can also trigger other
 SubSwitchControllers when you reach the Node or after waiting time has finished.

 It's possible to set movement rotation to the direction of which the object is facing when it
 reaches the nodes. In the next updates I will add more functions for rotation on Nodes.

 you can also define which actions the object should take when it is getting into state of
 Deactivating.

 NodeWalkerSwitchController

 For missing fields, see above
 ‘MainSubSwitchController’ explanation

 NextNodeIndex Node index, where TargetObject is moving
 to.

 LastReachedNodeIndex Last reached Node index.

 IsWaitingOnNode Is the targetObject waiting on Node
 currently?

 GameObjectTargetForAction TargetObject to move on nodes.

 MovementDirection Movement direction of TargetObject.

 MovementRotation Movement rotation option.

 MovementRotationSpeed Speed of movement rotation.

 ShouldLoopOnActivating Should move in a loop, from last node to
 first node when reached?

 DoOnDestinationReached Options for actions to take when reaching
 the last node in a non looping context.

 DoOnDeactivating Which actions should be taken when the
 NodeWalker state is state to Deactivating?

 DeactivatedDestinationNodeIndex Node index for DoOnDeactivating action.

 ReverseDirectionAfterDeactivated Should the direction be reversed/inverted
 after the Deactivated state has been set.

 MovementNodes List of nodes to move to with configurations.

 MovementNodes

 Position Position of node to where the TargetObject
 should move to.

 MovementSpeed Speed of the movement.
 (Will add SpeedFlow chart next updates)

 AdvancedSettingsConfiguration Expand advanced settings.

 WaitOnNodeForSeconds Wait an amount of seconds on the node
 and then keep moving.

 SubSwitchControllersToTriggerAfterWait After waiting has finished on the node, set
 state on given SubSwitchControllers.

 see above ‘MainSubSwitchController’
 explanation

 SubSwitchControllersToTriggerOnReached When reached the node, set state on given
 SubSwitchControllers.

 see above ‘MainSubSwitchController’
 explanation

 4.3 CustomSwitchController_ConstantRotator

 Handles:
 - Constant rotation of TargetObject by given speed on an axis.

 Simple SwitchController that is used to constantly rotate objects.

 For missing fields, see above
 ‘MainSubSwitchController’ explanation

 GameObjectTargetForAction TargetObject to rotate.

 RotationDirectionSpeed Rotation speed for each axis to rotate. Use
 -x, -y,-z to Rotate opposite.

 4.4 CustomSwitchController_SwitchMaterial

 Handles:
 - Switches/Replaces materials by given material slot/index.
 - Sets material by given material slot/index.

 By given materials this SwitchController can depending on the state switch/replace
 materials.

 Or it can set a material by index. If the renderer has less materials, the list will be increased.

 For missing fields, see above
 ‘MainSubSwitchController’ explanation

 GameObjectTargetWithMaterial Target GameObject to switch materials on.

 Mode SwitchMaterials: Switch one material to
 another one and back depending on state.

 SetMaterial: Set material to desired on
 Activated or Deactivated.

 AffectedMaterialSlot Affected material slot/index of the mesh
 renderer.

 StateRequiredForAction On which state to perform the desired
 action.

 MaterialActivated Material to set on Activated state.

 MaterialDeactivated Material to set on Deactivated state.

 MaterialForAction Material to set on action.

 4.5 CustomSwitchController_CombinationProxy

 Handles:
 - Simple combine of states on multiple SwitchControllers to set other

 SubSwitchControllers depending on them.

 When all callers match the same state ‘Activated’ (or by inverting with
 ‘InvertExternalStateChange’ -> Deactivated) the SubSwitchControllers will set to Activating.
 The same or even more advanced effect can be reached by using preconditions on
 MainSwitchController and NodeWalker! It's just a weaker all-around version of that, which
 can be used with any SwitchController.

 By setting DefaultStateWhenNotCombined to something else than ‘ignore’ it will emit to
 SubSwitchControllers chosen state if the caller SwitchControllers does not match same
 combination.

 On Example screenshot you can see the following setting: If caller element0 and 2 is set to
 Activated and element1(inverted) to Deactivated, the SubSwitch-Dummy will be set to
 Activating. If the Caller constellation is opposite, the subSwitchController will be set to
 Deactivating.

 By using DefaultStateWhenNotCombined -> Deactivated for example it needs only one
 wrong caller to set the SubSwitchControllers to Deactivated state.

 CurrentState Current state of the SwitchController

 DefaultStateWhenNotCombined When the caller combination is not in same
 state (or by inverting) this default state will
 be set.

 Callers

 OtherSwitchControllers_ToTriggerOnStatus
 Change

 SubSwitchControllers to set state when this
 controller's state changes.

 Simpler version of previously explained
 field.

 Callers

 LastStateReceived(ReadOnly) Last state of the caller that is known

 OtherSwitchController_Caller The GameObject with SwitchController that
 has an impact on the SubSwitchControllers
 state.

 InvertExternalStateChange To change the state of SubSwitch
 controllers all callers must have the same
 state or they can invert by this field the
 condition.

 For example with three callers:
 0: Activated,
 1: Deactivated(Inverted)
 2: Activated

 SubSwitchControllers = Activating

 4.6 CustomSwitchController_ToggleStateFilterProxy

 Handles:
 - Sets state of target Switch controller only if certain state is received

 Standalone weaker version to do the same as the ‘RewriteAnyStateWith’ field on the
 SubSwitchController list.’ Useful in custom scripts without implementing
 SubSwitchControllerSettingModel.

 4.6 Create your own SwitchControllers
 You can easily connect your scripts as SubSwitchControllers to other SwitchControllers by
 implementing the ISwitchController interface. They will automatically receive icons in the
 hierarchy window and you will be able to change their state by other SControllers.

 Copy, rename the file CustomSwitchController_TemplateYourScriptExample.cs and add your
 logic. After that you can add them to any SubSwitchController field.

 ISwitchController interface wants you to implement those methods:
 - GetGameObjectAttachedTo : Used by hierarchy window icon draw. Do not change it!
 - GetCurrentStateByCaller : To read the current state. Do not change it!
 - OnSetStateByCaller : Other SwitchControllers or StateSetter where you attach your

 SwitchController will write to this Method a new state. You can write your full logic
 here if you don't want to use Update Method.

 5. Usage SwitchControllerStateSetter
 To set SwitchController state it is needed to call its OnSetStateByCaller(...) method. Scripts
 which are doing it and are not SwitchControllers themself, which dont have their own state,
 are defined here as “StateSetter”.

 5.1 OnCollision_SwitchControllerStateSetter
 Handles:

 - Sets a state of SwitchControllers depending on collision events.

 This script can be used to activate switches if you step on them, changing the state of
 SwitchControllers by colliding with a collider.

 You can add multiple target objects with SwitchControllers into the configuration list.
 Define the “LayersForCollisionDetection” or else unwanted GameObjects will trigger the
 state change on SwitchControllers.

 Similar implementation is used by the ExampleButtonClick_SwitchControllerStateSetter.cs
 but adds InputEvent for old EventSystem. So after Player collides with collider he needs to
 press the right key to switch state of the attached GameObject.
 Look into them to create your own StateSetters depending on your needs.
 The UiTextComponent is optional in the demo script.

 5.2 Create your own SwitchControllerStateSetter
 To create your own StateSetter scripts simply get objects with SwitchControllers (That
 implements ISwitchController) and call OnSetStateByCaller on them. Add implementation of
 IStateSetter interface to your script to make it receive an icon in the hierarchy view.

 You can use the example to simply create your StateSetter.
 Copy, rename the file SwitchControllerStateSetter_TemplateYourScriptExample.cs and add
 your logic or look at OnCollision_SwitchControllerStateSetter.cs or
 ExampleButtonClick_SwitchControllerStateSetter.cs . After that you can set the states of
 SwitchControllers.

 6. Visualization and Configuration
 Switch and trap provides three types of helpers for your project :

 - The coloring in the inspector
 - The icons in hierarchy window that indicates which script is attached
 - The gizmos in the scene window which shows connection of SwitchControllers. They

 support MainSwitchController and NodeWalker the best.

 If you don't want to use any of these you can turn the options off:

 6.1 The coloring in the inspector
 The SwitchControlles provides you with a lot of options to control objects. The coloring helps
 to keep easier track of main fields(blue tones) and optional or advanced settings (green
 tones). Other colors helps to keep apart some other settings.

 6.2 Hierarchy icons
 To keep better control on attached scripts to objects there is an option to show the kitten
 icons on the hierarchy window. The border indicates which kind of script is attached. You can
 implement existing light interfaces in your custom scripts to mark them with icons.

 MainSwitchController is attached.

 NodeWalker is attached.

 ConstantRotator is attached.

 Any other script which implements the
 “ISwitchController” interface is attached.
 Could be yours. just implement the
 ISwitchController interface. This will add
 icon and allow your script to be
 chain-connected with SwitchControllers.

 Implement those methods:

 OnSetStateByCaller(..)
 and
 OnGetStateByCaller();

 Scripts attached that can set the state of
 SwitchControllers for example scripts on
 collider which activates buttons, see
 “OnCollision_SwitchControllerStateSetter” .
 You can create custom scripts and
 implement “IStateSetter” to add to them the
 icon.

 6.3 Gizmos in scene view
 To help visualize the connection between SwitchControllers you can use the
 SwitchNTrap-gizmos. The color indicators and labels show the configuration of the
 SwitchControllers.

 The lines for MianSwitchController can show the state transmission to other
 SwitchControllers or preconditions and positions. Compare the gizmos on demo scenes with
 the scripts to fully understand the meaning of the indicators and colors.

 To easily read the labels, zoom-in the object by focusing it first with the button “F” and rotate
 the perspective.

 Sometimes you don't want to see labels because they can overload the view. just turn them
 off locally by clicking the checkbox.

 This way you get better control on full configuration of complex connections.

 7. Lever generator (in demo scene)

 In the demo scene you can combine your custom levers.

 Just step with the character on the ground switches to choose the materials.

 Select in the scene the leaver, drag and drop it in your asset folder, give it a name.

